NOVEL UNEXPECTED EXAMPLES OF ⁵J_{HH} LONG RANGE COUPLINGS IN CARBOHYDRATES.

H.Hönig⁺, I.Macher and H.Weidmann Institute for Organic Chemistry, Technical University of Graz, A 8010 Graz, Austria.

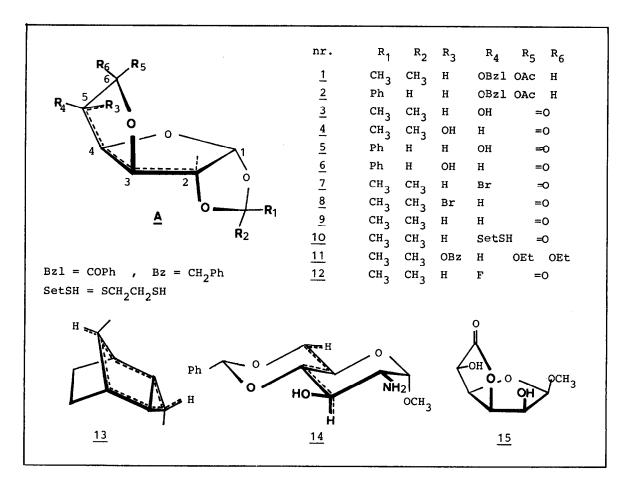
Summary: ${}^{5}J_{H}$ Couplings proceeding through a H-C-C-C-C-H - fragment rather than a H-C-O-C-C-H - path in certain L-idofuranose derivatives are described. The probable mechanism is discussed.

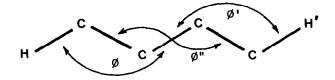
In the course of our work towards the synthesis of a variety of specifically substituted carbohydrates of skeleton \underline{A}^1 analysis of the NMR - spectrum of $\underline{1}$ was complicated by some 4J and 5J couplings within the ring protons, the ${}^5J_{H2,H5}$ coupling being the most striking one. During our literature search we found only two examples $\underline{13}^2$ and $\underline{14}^3$ of ${}^5J_{HH}$ couplings through five sigma bonds <u>not</u> interrupted by an heteroatom as in our case, whilst most of the shown examples involve H-C-O-C-C-H - fragments. Jochims in his excellent paper on NMR - analysis of a large group of similarily structured carbohydrates⁴ did only mention couplings between H-1 and the endo methyl group of the isopropylidenering (e.g. R_2 in compound $\underline{4}$). As we could reproduce his findings but did notice some additional ${}^4J_{HH}$ couplings in our substances (which do not fall within the "virtual coupling limits"⁵) together with the above mentioned unexpected 5J coupling, we decided to investigate the whole group of substances in more detail.

The results are summarized in table I.

All observed spectra are in excellent agreement with simulated ones⁶. The sign of all ${}^{5}J_{\rm HH}$ couplings (as determined by selective spin tickling⁷ and taking the sign of vicinal couplings as positive) has been found to be positive in agreement with theoretical considerations⁸ and most of the reported values in the literature (see e.g. ref. 4 and cited examples).

2579




Table I. Coupling constants of some selected representatives of skeleton A (in Hz)

Nr.	Solvent	Temp (^O K)	5 _J _{H2,H5}	^J 1,3	^J 2,4	J _{3,5}	^J 4,5	^J 4,6	J _{H1} ,PhC <u>H</u>
<u>1</u>	CDC13	301	0.8	0.3	0.4	0.3	0.4	0.4	-
2	CDC13	301	0.8	C.4	0.4	0.3	0.5		0.2
2 3 4 5 6 7 8 9	C ₆ D ₆	377	0.9	0.5	0.5	0.5	0.6	-	-
<u>4</u>	°6 [₽] 6	377	<0.1	<0.1	<0.1	<0.1	4.0	-	-
<u>5</u>	Ac-d ₆ +D ₂ O	301	0.8	0.5	0.5	0.4	0.6	-	0.1
<u>6</u>	Ac-d6+D20	301	<0.1						
<u>7</u>	C ₆ D ₆	301	1.0	0.5	0.4	0.4	0.5	-	-
8	C ₆ D ₆	301	<0.1	0.5	0.5	<0.1	4.3	-	-
<u>9</u>	C ₆ D ₆	301	H-5endo 0.95	0.4	0.4	0.5	0.5	-	-
			H-5exo <0.1	<0.1	<0.1	<0.1	4.5	-	-
<u>10</u>	C ₆ D ₆	301	0.9	0.5	0.3	0.4	0.5	-	-
<u>11</u>	C6D6	301	<0.1						
<u>15</u>	$Ac-d_6+D_2O$	301	<0.1				6.2		

Compounds 1, 3 - 5 and 7 - 10 all show $J_{CH_3endo,H_2} = 0.15$ Hz, $J_{CH_3endo,H_1} = 0.35$ Hz and $J_{CH_3endo,CH_3exo} = 0.65 - 0.7$ Hz.

As can be seen from table I only L-ido derivatives (H-5 endo) exhibit detectable ${}^{5}J_{H2,H5}$ couplings. Compound <u>9</u> proves that neither an oxygen nor any other substituent with lone pairs adjacent to H-5 is necessary for this type of coupling contrary to the findings of Jochims⁴ for the other fragments of similarily structured carbohydrates investigated in his paper. With respect to these results it is interesting to notice, that in a fluoro-L-ido derivative (<u>12</u>, F-5 exo) Hall⁹ found that the fluorine substituent exhibits detectable spin coupling with all ring protons <u>exept H-2</u>. Consequently some steric requirements have to be met in order to obtain ${}^{5}J_{H2,H5}$ couplings of appreciable size. In an attempt to rationalize such steric requirements for ${}^{5}J_{HH}$ couplings Barfield and Chakrabarti¹⁰ describe equation (1)

 ${}^{5}J_{HH'} = (A\cos^{2}\phi + B\cos\phi + C) \times (A\cos^{2}\phi' + B\cos\phi' + C)$ (1)

regarding the central dihedral angle (ϕ ") as of no importance.

Force field calculations¹¹ as well as considerations of models did not reveal any substantial differences in the respective dihedral angles (\emptyset and \emptyset ') for either one of these substances. The only differences are found in the shorter distances of H-2 to H-5 in L-ido-(1, 2, 3, 5, 7 and 10) against D - gluco-(4, 6 and 8) and D - manno-(15) derivatives. As neither the steric requirements for an extended W mechanism¹² nor the postulates of Jochims⁴ are met in our case, it is more likely that the mechanism of this specific coupling proceeds through a direct way "through space" rather than an indirect one "through bonds"¹⁰.

EXPERIMENTAL

NMR - spectra were taken in solvent and at temperature specified in table I on a Bruker WH 90 spectrometer. Choice was made according to maximum resolution and/or solubility. The synthesis of the substances is described elsewhere^{1,13,14}. Calculations were performed on an Univac 1100/80 system equipped with a Benson plotter.

ACKNOWLEDGEMENTS

Financial support from the Fonds for Promotion of Scientific Research in Austria (project nr. 3341) and provision of computing time by the Computer Center of Graz is gratefully acknowledged.

NOTES AND REFERENCES

- 1 I.Macher, K.Dax, E.Wanek and H.Weidmann, Carbohydr.Res., in press
- 2 K.Tori and M.Ohtsuru, Chem.Commun.,23,448(1970)
- 3 C.B.Barlow, E.O.Bishop, P.R.Carey and R.D.Guthrie, Carbohydr.Res., 9,99(1969)
- 4 J.C.Jochims and G.Taigel, Chem.Ber., 103, 448(1970)
- 5 J.I.Musher and E.J.Corey, Tetrahedron, 18, 791 (1962)
- 6 Done with LAOCN3 by A.A.Bothner.By and S.Castellano, QCPE nr. 111 and an adapted plotter routine.
- 7 W.A.Anderson and R.Freeman, J.Chem.Phys., 37,85(1962)
- 8 A.M.McConnell, J.Chem.Phys., 23, 2425 (1955)
- 9 L.D.Hall and P.R.Steiner, Can.J.Chem., 48, 451 (1970)
- 10 M.Barfield and B.Chakrabarti, Chem.Reviews, 69, 757 (1969)
- 11 H.Hönig, unpublished results
- 12 N.V.Riggs and M.Verma, Tetrahedron Letters, 3767(1968)
- 13 T.Irimajiri, H.Yoshida, T.Ogata and S.Inokawa, Bull.Chem.Soc.Jap.,<u>43</u>,3242(1970)
- 14 H.Paulsen and D.Stoye, Chem.Ber., 99, 908 (1966)

(Received in Germany 26 April 1979)